irrigation using HYDRUS-2D in rice under annual rotation with wheat in Western Indo-Gangetic Plains

Asia. Conventional tillage-based and flood irrigated puddled transplanted rice (PTR) is a major contributor to faster depleting aquifers. Urgent actions are therefore warranted to develop alternate productive, profitable, water and N-use efficient rice production practices for rice-wheat (RW) cropping system. Conservation agriculture (CA) based direct-seeded rice (DSR) has been advocated as a potential alternative to PTR. Further, bundling CA with precision water and N management using sub-surface drip irrigation (SSD) has demonstrated significant benefits over CA-based flood irrigation (FI). However, for more efficient use of water, water budgeting is needed which is a challenging task as it requires expensive tools, and time, and efforts. Information about complete water budgeting in high water demanding crops like rice grown under CA-based SSD, FI, and PTR are not available. We deployed HYDRUS-2D model for estimating water budgeting of rice under CA+ (CA-based SSD), CA-based FI, and PTR-based systems. The objective of our study was to calibrate and validate the HYDRUS- 2D model to simulate water dynamics in rice grown under CA-based SSD and FI compared to PTR and to design water and N- use efficient production practices for rice cultivation in western IGP. Five treatments comprised of PTR+FI with 120 kg N ha􀀀 1 (PTR), zero-till direct-seeded rice (ZTDSR)+FI without N (ZT-N0), ZTDSR+FI with 100% of N recommended dose (ZT-N100), ZTDSR+SSD without N (SSD-N0), and ZTDSR+SSD with 100% of Nrecommended dose (SSD-N100) were compared. The result showed that the HYDRUS-2D model satisfactorily simulated the soil moisture content with low root mean square error (RMSE) (0.014–0.028), high coefficient of determination (74–92%), and model efficiency (59–87%) during the simulation period (80 days: 35–114 days after sowing). The highest grain yield (7.18 t ha􀀀 1) was observed in the PTR treatment, which was statistically similar to SSD-N100 (6.54 t ha􀀀 1) and significantly higher than ZT-N100. During the simulation period, PTR plots received 131.7 cm of water (rainfall + irrigation) which was 27.3% and 50.1% higher than ZT-N100 and SSD-N100 plots, respectively. Out of the cumulative water applied, PTR transpired only 18.4% of applied water, compared to 24% in ZT-N100 and 36.3% in SSD-N100. Interestingly, SSD-N100 plots recorded 20.6% and 23.5% less evaporative loss and 45.0% and 66.0% less water loss by deep drainage than ZT-N100 and PTR, respectively. Thus, conversion to CA+ system with 100% N-recommended dose saved 50.1% and 31.3% of water, and consequently attained 2.0 and 1.45-times higher biomass water use efficiency than PTR and ZT-N100, respectively. Based on the results, CA-based SSD could be recommended for precise utilization of water and to curtails the unproductive water loss components such as evaporation and deep drainage.

Data and Resources

Additional Info

Field Value
Author Rana, Biswajit, Parihar, CM, Nayak, HS, Patra, Kiranmoy, Singh, VK, Singh, DK, Pandey, Renu, Abdallah, Ahmed, Gupta, N, Sidhu, HS, Gerard, B, Jat, ML
Maintainer CIMMYT Research Data & Software Repository Network
Last Updated January 20, 2025, 16:15 (UTC)
Created January 20, 2025, 16:15 (UTC)
contributor KALVANIA, Kailash Chandra
creator Rana, Biswajit
date 2022-08-03T00:00:00
harvest_object_id cd9c3244-56b9-445b-bac0-e4407cb23e07
harvest_source_id a58b0729-e941-4389-816d-5823f01c0d28
harvest_source_title CIMMYT Research Data
identifier https://hdl.handle.net/11529/10548771
language English
metadata_modified 2024-10-26T07:00:04
set_spec cimmytdatadvn