Replication Data for: A guide for generalized kernel regression methods for genomic-enabled prediction

The data contained in these datasets can be used to implement Bayesian generalized kernel regression methods for genome-enabled prediction in the statistical software R, The accompanying paper describes the building process of 7 kernel methods (linear, polynomial, sigmoid, Gaussian and Arc-cosine 1, Arc-cosine L).

Data and Resources

Additional Info

Field Value
Author Montesinos-López, Abelardo, Montesinos-López, Osval A., Montesinos-López, José Cricelio, Flores-Cortes, Carlos Alberto, de la Rosa, Roberto, Crossa, Jose
Maintainer CIMMYT Research Data & Software Repository Network
Last Updated January 20, 2025, 15:56 (UTC)
Created January 20, 2025, 15:56 (UTC)
contributor Dreher, Kate
creator Montesinos-López, Abelardo
date 2020-10-24T00:00:00
harvest_object_id 1cb4bea7-e451-4209-b73e-d3f85906a744
harvest_source_id a58b0729-e941-4389-816d-5823f01c0d28
harvest_source_title CIMMYT Research Data
identifier https://hdl.handle.net/11529/10548532
language English
metadata_modified 2024-10-26T07:00:04
set_spec cimmytdatadvn