In this study, we evaluated genome-based prediction using 35,403 wheat lines from the Global Wheat Breeding Program of the International Maize and Wheat Improvement Center (CIMMYT). We implemented eight statistical models that included genome-wide molecular marker and pedigree information in two different validation schemes. All models included main effects, and others also considered interactions between the different types of covariates via Hadamard products of similarity structures. The pedigree models always gave better results predicting new lines in observed environments than the genome-based models when only main effects were fitted. However, for all traits, the highest predictive abilities were obtained when interactions between pedigree, markers and environments were included. When new lines were predicted in unobserved environments in almost all trait/year combinations, the marker main-effects model was the best. These results provide strong evidence that the different sources of genetic information (molecular markers and pedigree) are not equally useful at different stages of the breeding pipelines, and can be employed differentially to improve the design of future breeding programs.