Search datasets
275 datasets found
-
SoilGrids250m 2.0 - Volumetric Water Content at 1500kPa aggregated 1000m N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Volumetric Water Content at 1500kPa suction in 10-3 cm3cm-3 (0.1 v% or 1 mm/m) at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. This map is the result of resampling the mean SoilGrids 250 m predictions (Turek...Created October 25, 2023 • Updated November 25, 2023 -
SoilGrids250m 2.0 - Volumetric Water Content at 1500kPa aggregated 5000m N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Volumetric Water Content at 1500kPa suction in 10-3 cm3cm-3 (0.1 v% or 1 mm/m) at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. This map is the result of resampling the mean SoilGrids 250 m predictions (Turek...Created October 25, 2023 • Updated November 25, 2023 -
SoilGrids250m 2.0 - Volumetric Water Content at 10kPa aggregated 1000m N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Volumetric Water Content at 10 kPa suction in 10-3 cm3cm-3 (0.1 v% or 1 mm/m) at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. This map is the result of resampling the mean SoilGrids 250 m predictions (Turek...Created October 25, 2023 • Updated November 25, 2023 -
SoilGrids250m 2.0 - Silt content aggregated 1000m N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Silt content (2-50/63 micro meter) mass fraction in ‰ at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. This map is the result of resampling the mean SoilGrids 250 m predictions (Poggio et al. 2021) for each...Created October 25, 2023 • Updated October 25, 2023 -
Global Assessment of Human-induced Soil Degradation (GLASOD) N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)The GLASOD project (1987-1990), carried out for UNEP, has produced a world map of human-induced soil degradation. Data were compiled in cooperation with a large number of soil scientists throughout the world, using uniform Guidelines and international correlation. The status of soil degradation was mapped within loosely defined physiographic units...Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2017-03 - Probability of occurrence of R horizon N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Probability of occurrence of R horizon predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: probability.Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2017-03 - Sand content (50-2000 micro meter) mass fraction N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Sand content (50-2000 micro meter) mass fraction in % at 7 standard depths predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: w%.Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2.0 - Total nitrogen aggregated 5000m N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Total nitrogen in cg/kg at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. This map is the result of resampling the mean SoilGrids 250 m predictions (Poggio et al. 2021) for each 5000 m cell.Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2017-03 - Bulk density (fine earth) N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Bulk density (fine earth) in kg / cubic-meter at 7 standard depths predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: kg / m3.Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2.0 - Sand content aggregated 5000m N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Sand content (50/63-2000 micro meter) mass fraction in ‰ at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. This map is the result of resampling the mean SoilGrids 250 m predictions (Poggio et al. 2021) for each...Created October 25, 2023 • Updated October 25, 2023 -
International Soil Carbon Network (ISCN) N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)The International Soil Carbon Network (ISCN) is a science-based network that facilitates data sharing, assembles databases, identifies gaps in data coverage, and enables spatially explicit assessments of soil carbon in context of landscape, climate, land use, and biotic variables.Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2.0 - Sand content aggregated 1000m N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Sand content (50/63-2000 micro meter) mass fraction in ‰ at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. This map is the result of resampling the mean SoilGrids 250 m predictions (Poggio et al. 2021) for each...Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2.0 - Soil pH in H2O N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Soil pH x 10 in H2O at 6 standard depths (to convert to pH values divide by 10). Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. To visualize these layers please use www.soilgrids.org.Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2.0 - Bulk density aggregated 1000m N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Bulk density (fine earth) in cg/cm³ at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. This map is the result of resampling the mean SoilGrids 250 m predictions (Poggio et al. 2021) for each 1000 m cell.Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2.0 - Bulk density N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Bulk density (fine earth) in cg/cm³ at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. To visualize these layers please use www.soilgrids.org.Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2.0 - Silt content aggregated 5000m N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Silt content (2-50/63 micro meter) mass fraction in ‰ at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. This map is the result of resampling the mean SoilGrids 250 m predictions (Poggio et al. 2021) for each...Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2017-03 - Derived available soil water capacity (volumetric fra... N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Derived available soil water capacity (volumetric fraction) until wilting point at 7 standard depths predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE')....Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2017-03 - Derived available soil water capacity (volumetric fra... N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Derived available soil water capacity (volumetric fraction) with FC = pF 2.3 at 7 standard depths predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement...Created October 25, 2023 • Updated October 25, 2023 -
SoilGrids250m 2017-03 - Sodic soil grade based on WRB soil types and soil pH N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)Sodic soil grade based on WRB soil types and soil pH predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: grade.Created October 25, 2023 • Updated October 25, 2023 -
A homogenized soil data file for global environmental research: A subset of F... N3 | TTL | RDF/XML | JSON-LD
FDRE - Ministry of Agriculture (MoA)A homogenized, global set of 1,125 soil profiles is presented. These profiles have been extracted from the database developed at ISRIC for a project on "World Inventory of Soil Emission Potentials" (WISE), as a contribution to the activities of the Global Soils Data Task Group of IGBP-DIS. The subset consists of a selection of 665 profiles originating...Created October 25, 2023 • Updated October 25, 2023
Can't find it?
Request a Dataset